Skip to content

Built-in neuron types#

ANNarchy provides standard spiking neuron models, similar to the ones defined in PyNN (http://neuralensemble.org/docs/PyNN/reference/neuronmodels.html).

ANNarchy.models.Neurons.LeakyIntegrator #

Bases: Neuron

Leaky-integrator rate-coded neuron, optionally noisy.

This simple rate-coded neuron defines an internal variable \(v(t)\) which integrates the inputs \(I(t)\) with a time constant \(\tau\) and a baseline \(B\). An additive noise \(N(t)\) can be optionally defined:

\[\tau \cdot \frac{dv(t)}{dt} + v(t) = I(t) + B + N(t)\]

The transfer function is the positive (or rectified linear ReLU) function with a threshold \(T\):

\[r(t) = (v(t) - T)^+\]

By default, the input \(I(t)\) to this neuron is "sum(exc) - sum(inh)", but this can be changed by setting the sum argument:

neuron = LeakyIntegrator(sum="sum('exc')")

By default, there is no additive noise, but the noise argument can be passed with a specific distribution:

neuron = LeakyIntegrator(noise="Normal(0.0, 1.0)")

Parameters:

  • tau = 10.0 : Time constant in ms of the neuron.
  • B = 0.0 : Baseline value for v.
  • T = 0.0 : Threshold for the positive transfer function.

Variables:

  • v : internal variable (init = 0.0):

    tau * dv/dt + v = sum(exc) - sum(inh) + B + N

  • r : firing rate (init = 0.0):

    r = pos(v - T)

The ODE is solved using the exponential Euler method.

Equivalent code:

LeakyIntegrator = Neuron(
    parameters='''
        tau = 10.0 : population
        B = 0.0
        T = 0.0 : population
    ''', 
    equations='''
        tau * dv/dt + v = sum(exc) - sum(inh) + B : exponential
        r = pos(v - T)
    '''
)
Source code in ANNarchy/models/Neurons.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class LeakyIntegrator(Neuron):
    r"""
    Leaky-integrator rate-coded neuron, optionally noisy.

    This simple rate-coded neuron defines an internal variable $v(t)$ 
    which integrates the inputs $I(t)$ with a time constant $\tau$ and a baseline $B$. 
    An additive noise $N(t)$ can be optionally defined: 

    $$\tau \cdot \frac{dv(t)}{dt} + v(t) = I(t) + B + N(t)$$

    The transfer function is the positive (or rectified linear ReLU) function with a threshold $T$:

    $$r(t) = (v(t) - T)^+$$

    By default, the input $I(t)$ to this neuron is "sum(exc) - sum(inh)", but this can be changed by 
    setting the ``sum`` argument:

    ```python
    neuron = LeakyIntegrator(sum="sum('exc')")
    ```

    By default, there is no additive noise, but the ``noise`` argument can be passed with a specific distribution:

    ```python
    neuron = LeakyIntegrator(noise="Normal(0.0, 1.0)")
    ```

    Parameters:

    * tau = 10.0 : Time constant in ms of the neuron.
    * B = 0.0 : Baseline value for v.
    * T = 0.0 : Threshold for the positive transfer function.

    Variables:

    * v : internal variable (init = 0.0):

        tau * dv/dt + v = sum(exc) - sum(inh) + B + N

    * r : firing rate (init = 0.0):

        r = pos(v - T)

    The ODE is solved using the exponential Euler method.

    Equivalent code:

    ```python
    LeakyIntegrator = Neuron(
        parameters='''
            tau = 10.0 : population
            B = 0.0
            T = 0.0 : population
        ''', 
        equations='''
            tau * dv/dt + v = sum(exc) - sum(inh) + B : exponential
            r = pos(v - T)
        '''
    )
    ```
    """

    # For reporting
    _instantiated = []

    def __init__(self, tau=10.0, B=0.0, T=0.0, sum='sum(exc) - sum(inh)', noise=None):
        # Create the arguments
        parameters = """
            tau = %(tau)s : population
            B = %(B)s
            T = %(T)s : population
        """ % {'tau': tau, 'B': B, 'T': T}

        # Equations for the variables
        if not noise:
            noise_def = ''
        else:
            noise_def = '+ ' + noise

        equations="""
            tau * dv/dt + v = %(sum)s + B %(noise)s : exponential
            r = pos(v - T)
        """ % { 'sum' : sum, 'noise': noise_def}

        Neuron.__init__(self, 
            parameters=parameters, equations=equations,
            name="Leaky-Integrator", 
            description="Leaky-Integrator with positive transfer function and additive noise.")

        # For reporting
        self._instantiated.append(True)

ANNarchy.models.Neurons.Izhikevich #

Bases: Neuron

Izhikevich neuron as proposed in:

Izhikevich, E.M. (2003). Simple Model of Spiking Neurons, IEEE Transaction on Neural Networks, 14:6. http://dx.doi.org/10.1109/TNN.2003.820440

The equations are:

\[\frac{dv}{dt} = 0.04 * v^2 + 5.0 * v + 140.0 - u + I\]
\[\frac{du}{dt} = a * (b * v - u)\]

By default, the conductance is "g_exc - g_inh", but this can be changed by setting the conductance argument:

neuron = Izhikevich(conductance='g_ampa * (1 + g_nmda) - g_gaba')

The synapses are instantaneous, i.e the corresponding conductance is increased from the synaptic efficiency w at the time step when a spike is received.

Parameters:

  • a = 0.02 : Speed of the recovery variable
  • b = 0.2: Scaling of the recovery variable
  • c = -65.0 : Reset potential.
  • d = 8.0 : Increment of the recovery variable after a spike.
  • v_thresh = 30.0 : Spike threshold (mV).
  • i_offset = 0.0 : external current (nA).
  • noise = 0.0 : Amplitude of the normal additive noise.
  • tau_refrac = 0.0 : Duration of refractory period (ms).

Variables:

  • I : input current (user-defined conductance/current + external current + normal noise):

    I = conductance + i_offset + noise * Normal(0.0, 1.0)

  • v : membrane potential in mV (init = c):

    dv/dt = 0.04 * v^2 + 5.0 * v + 140.0 - u + I

  • u : recovery variable (init= b * c):

    du/dt = a * (b * v - u)

Spike emission:

v > v_thresh

Reset:

v = c
u += d

The ODEs are solved using the explicit Euler method.

Equivalent code:

    Izhikevich = Neuron(
        parameters = """
            noise = 0.0
            a = 0.02
            b = 0.2
            c = -65.0
            d = 8.0
            v_thresh = 30.0
            i_offset = 0.0
        """, 
        equations = """
            I = g_exc - g_inh + noise * Normal(0.0, 1.0) + i_offset
            dv/dt = 0.04 * v^2 + 5.0 * v + 140.0 - u + I : init = -65.0
            du/dt = a * (b*v - u) : init= -13.0
        """,
        spike = "v > v_thresh",
        reset = "v = c; u += d",
        refractory = 0.0
    )

The default parameters are for a regular spiking (RS) neuron derived from the above mentioned article.

Source code in ANNarchy/models/Neurons.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
class Izhikevich(Neuron):
    '''
    Izhikevich neuron as proposed in:

    > Izhikevich, E.M. (2003). *Simple Model of Spiking Neurons, IEEE Transaction on Neural Networks*, 14:6. <http://dx.doi.org/10.1109/TNN.2003.820440>

    The equations are:

    $$\\frac{dv}{dt} = 0.04 * v^2 + 5.0 * v + 140.0 - u + I$$

    $$\\frac{du}{dt} = a * (b * v - u)$$

    By default, the conductance is "g_exc - g_inh", but this can be changed by setting the ``conductance`` argument:

    ```python
    neuron = Izhikevich(conductance='g_ampa * (1 + g_nmda) - g_gaba')
    ```

    The synapses are instantaneous, i.e the corresponding conductance is increased from the synaptic efficiency w at the time step when a spike is received.

    Parameters:

    * a = 0.02 : Speed of the recovery variable
    * b = 0.2: Scaling of the recovery variable
    * c = -65.0 : Reset potential.
    * d = 8.0 : Increment of the recovery variable after a spike.
    * v_thresh = 30.0 : Spike threshold (mV).
    * i_offset = 0.0 : external current (nA).
    * noise = 0.0 : Amplitude of the normal additive noise.
    * tau_refrac = 0.0 : Duration of refractory period (ms).

    Variables:

    * I : input current (user-defined conductance/current + external current + normal noise):

        I = conductance + i_offset + noise * Normal(0.0, 1.0)

    * v : membrane potential in mV (init = c):

        dv/dt = 0.04 * v^2 + 5.0 * v + 140.0 - u + I 

    * u : recovery variable (init= b * c):

        du/dt = a * (b * v - u) 

    Spike emission:

        v > v_thresh

    Reset:

        v = c
        u += d 

    The ODEs are solved using the explicit Euler method.

    Equivalent code:

    ```python

        Izhikevich = Neuron(
            parameters = """
                noise = 0.0
                a = 0.02
                b = 0.2
                c = -65.0
                d = 8.0
                v_thresh = 30.0
                i_offset = 0.0
            """, 
            equations = """
                I = g_exc - g_inh + noise * Normal(0.0, 1.0) + i_offset
                dv/dt = 0.04 * v^2 + 5.0 * v + 140.0 - u + I : init = -65.0
                du/dt = a * (b*v - u) : init= -13.0
            """,
            spike = "v > v_thresh",
            reset = "v = c; u += d",
            refractory = 0.0
        )
    ```

    The default parameters are for a regular spiking (RS) neuron derived from the above mentioned article.
    '''

    # For reporting
    _instantiated = []

    def __init__(self, 
        a=0.02, 
        b=0.2, 
        c=-65.0, 
        d=8.0, 
        v_thresh=30.0, 
        i_offset=0.0, 
        noise=0.0, 
        tau_refrac=0.0, 
        conductance="g_exc - g_inh"):

        # Extract which targets are defined in the conductance
        #import re
        #targets = re.findall(r'g_([\w]+)', conductance)

        # Create the arguments
        parameters = """
            noise = %(noise)s
            a = %(a)s
            b = %(b)s
            c = %(c)s
            d = %(d)s
            v_thresh = %(v_thresh)s
            i_offset = %(i_offset)s
            tau_refrac = %(tau_refrac)s
        """ % {'a': a, 'b':b, 'c':c, 'd':d, 'v_thresh':v_thresh, 'i_offset':i_offset, 'noise':noise, 'tau_refrac':tau_refrac}

        # Equations for the variables
        equations="""
            I = %(conductance)s + noise * Normal(0.0, 1.0) + i_offset
            dv/dt = 0.04 * v^2 + 5.0 * v + 140.0 - u + I : init = %(c)s
            du/dt = a * (b*v - u) : init= %(u)s
        """ % { 'conductance' : conductance, 'c':c , 'u': b*c}

        spike = """
            v > v_thresh
        """
        reset = """
            v = c
            u += d
        """
        Neuron.__init__(self, 
            parameters=parameters, equations=equations, spike=spike, reset=reset, refractory='tau_refrac',
            name="Izhikevich", description="Quadratic integrate-and-fire spiking neuron with adaptation.")

        # For reporting
        self._instantiated.append(True)

ANNarchy.models.Neurons.IF_curr_exp #

Bases: Neuron

IF_curr_exp neuron.

Leaky integrate-and-fire model with fixed threshold and decaying-exponential post-synaptic current. (Separate synaptic currents for excitatory and inhibitory synapses).

Parameters:

  • v_rest = -65.0 : Resting membrane potential (mV)
  • cm = 1.0 : Capacity of the membrane (nF)
  • tau_m = 20.0 : Membrane time constant (ms)
  • tau_refrac = 0.0 : Duration of refractory period (ms)
  • tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
  • tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
  • i_offset = 0.0 : Offset current (nA)
  • v_reset = -65.0 : Reset potential after a spike (mV)
  • v_thresh = -50.0 : Spike threshold (mV)

Variables:

  • v : membrane potential in mV (init=-65.0):

    cm * dv/dt = cm/tau_m*(v_rest -v) + g_exc - g_inh + i_offset

  • g_exc : excitatory current (init = 0.0):

    tau_syn_E * dg_exc/dt = - g_exc

  • g_inh : inhibitory current (init = 0.0):

    tau_syn_I * dg_inh/dt = - g_inh

Spike emission:

v > v_thresh

Reset:

v = v_reset

The ODEs are solved using the exponential Euler method.

Equivalent code:

IF_curr_exp = Neuron(
    parameters = """
        v_rest = -65.0
        cm  = 1.0
        tau_m  = 20.0
        tau_syn_E = 5.0
        tau_syn_I = 5.0
        v_thresh = -50.0
        v_reset = -65.0
        i_offset = 0.0
    """, 
    equations = """
        cm * dv/dt = cm/tau_m*(v_rest -v)   + g_exc - g_inh + i_offset : exponential, init=-65.0
        tau_syn_E * dg_exc/dt = - g_exc : exponential
        tau_syn_I * dg_inh/dt = - g_inh : exponential
    """,
    spike = "v > v_thresh",
    reset = "v = v_reset",
    refractory = 0.0
)
Source code in ANNarchy/models/Neurons.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
class IF_curr_exp(Neuron):
    '''
    IF_curr_exp neuron.

    Leaky integrate-and-fire model with fixed threshold and decaying-exponential post-synaptic current. (Separate synaptic currents for excitatory and inhibitory synapses).

    Parameters:

    * v_rest = -65.0 :  Resting membrane potential (mV)
    * cm  = 1.0 : Capacity of the membrane (nF)
    * tau_m  = 20.0 : Membrane time constant (ms)
    * tau_refrac = 0.0 : Duration of refractory period (ms)
    * tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
    * tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
    * i_offset = 0.0 : Offset current (nA)
    * v_reset = -65.0 : Reset potential after a spike (mV)
    * v_thresh = -50.0 : Spike threshold (mV)

    Variables:

    * v : membrane potential in mV (init=-65.0):

        cm * dv/dt = cm/tau_m*(v_rest -v)   + g_exc - g_inh + i_offset

    * g_exc : excitatory current (init = 0.0):

        tau_syn_E * dg_exc/dt = - g_exc

    * g_inh : inhibitory current (init = 0.0):

        tau_syn_I * dg_inh/dt = - g_inh


    Spike emission:

        v > v_thresh

    Reset:

        v = v_reset

    The ODEs are solved using the exponential Euler method.

    Equivalent code:

    ```python

    IF_curr_exp = Neuron(
        parameters = """
            v_rest = -65.0
            cm  = 1.0
            tau_m  = 20.0
            tau_syn_E = 5.0
            tau_syn_I = 5.0
            v_thresh = -50.0
            v_reset = -65.0
            i_offset = 0.0
        """, 
        equations = """
            cm * dv/dt = cm/tau_m*(v_rest -v)   + g_exc - g_inh + i_offset : exponential, init=-65.0
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
        """,
        spike = "v > v_thresh",
        reset = "v = v_reset",
        refractory = 0.0
    )
    ```

    '''
    # For reporting
    _instantiated = []

    def __init__(self, v_rest=-65.0, cm=1.0, tau_m=20.0, tau_refrac=0.0, 
                tau_syn_E=5.0, tau_syn_I=5.0, v_thresh=-50.0, v_reset=-65.0, i_offset=0.0):

        # Create the arguments
        parameters = """
            v_rest = %(v_rest)s
            cm  = %(cm)s
            tau_m  = %(tau_m)s
            tau_refrac = %(tau_refrac)s
            tau_syn_E = %(tau_syn_E)s
            tau_syn_I = %(tau_syn_I)s
            v_thresh = %(v_thresh)s
            v_reset = %(v_reset)s
            i_offset = %(i_offset)s
        """ % {'v_rest':v_rest, 'cm':cm, 'tau_m':tau_m, 'tau_refrac':tau_refrac, 
                'tau_syn_E':tau_syn_E, 'tau_syn_I':tau_syn_I, 
                'v_thresh':v_thresh, 'v_reset':v_reset, 'i_offset':i_offset}

        # Equations for the variables
        equations="""    
            cm * dv/dt = cm/tau_m*(v_rest -v)   + g_exc - g_inh + i_offset : exponential, init=%(v_reset)s
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
        """ % {'v_reset':v_reset}

        spike = """
            v > v_thresh
        """
        reset = """
            v = v_reset
        """
        Neuron.__init__(self, parameters=parameters, equations=equations, 
            spike=spike, reset=reset, refractory='tau_refrac',
            name="Integrate-and-Fire", 
            description="Leaky integrate-and-fire model with fixed threshold and decaying-exponential post-synaptic current.")

        # For reporting
        self._instantiated.append(True)

ANNarchy.models.Neurons.IF_cond_exp #

Bases: Neuron

IF_cond_exp neuron.

Leaky integrate-and-fire model with fixed threshold and decaying-exponential post-synaptic conductance.

Parameters:

  • v_rest = -65.0 : Resting membrane potential (mV)
  • cm = 1.0 : Capacity of the membrane (nF)
  • tau_m = 20.0 : Membrane time constant (ms)
  • tau_refrac = 0.0 : Duration of refractory period (ms)
  • tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
  • tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
  • e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
  • e_rev_I = -70.0 : Reversal potential for inhibitory input (mv)
  • i_offset = 0.0 : Offset current (nA)
  • v_reset = -65.0 : Reset potential after a spike (mV)
  • v_thresh = -50.0 : Spike threshold (mV)

Variables:

  • v : membrane potential in mV (init=-65.0):

    cm * dv/dt = cm/tau_m*(v_rest -v) + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

  • g_exc : excitatory current (init = 0.0):

    tau_syn_E * dg_exc/dt = - g_exc

  • g_inh : inhibitory current (init = 0.0):

    tau_syn_I * dg_inh/dt = - g_inh

Spike emission:

v > v_thresh

Reset:

v = v_reset

The ODEs are solved using the exponential Euler method.

Equivalent code:

IF_cond_exp = Neuron(
    parameters = """
        v_rest = -65.0
        cm  = 1.0
        tau_m  = 20.0
        tau_syn_E = 5.0
        tau_syn_I = 5.0
        e_rev_E = 0.0
        e_rev_I = -70.0
        v_thresh = -50.0
        v_reset = -65.0
        i_offset = 0.0
    """, 
    equations = """
        cm * dv/dt = cm/tau_m*(v_rest -v)   + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset : exponential, init=-65.0
        tau_syn_E * dg_exc/dt = - g_exc : exponential
        tau_syn_I * dg_inh/dt = - g_inh : exponential
    """,
    spike = "v > v_thresh",
    reset = "v = v_reset",
    refractory = 0.0
)
Source code in ANNarchy/models/Neurons.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
class IF_cond_exp(Neuron):
    '''
    IF_cond_exp neuron.

    Leaky integrate-and-fire model with fixed threshold and decaying-exponential post-synaptic conductance.

    Parameters:

    * v_rest = -65.0 :  Resting membrane potential (mV)
    * cm  = 1.0 : Capacity of the membrane (nF)
    * tau_m  = 20.0 : Membrane time constant (ms)
    * tau_refrac = 0.0 : Duration of refractory period (ms)
    * tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
    * tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
    * e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
    * e_rev_I = -70.0 : Reversal potential for inhibitory input (mv)
    * i_offset = 0.0 : Offset current (nA)
    * v_reset = -65.0 : Reset potential after a spike (mV)
    * v_thresh = -50.0 : Spike threshold (mV)

    Variables:

    * v : membrane potential in mV (init=-65.0):

        cm * dv/dt = cm/tau_m*(v_rest -v)  + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

    * g_exc : excitatory current (init = 0.0):

        tau_syn_E * dg_exc/dt = - g_exc

    * g_inh : inhibitory current (init = 0.0):

        tau_syn_I * dg_inh/dt = - g_inh


    Spike emission:

        v > v_thresh

    Reset:

        v = v_reset

    The ODEs are solved using the exponential Euler method.

    Equivalent code:

    ```python

    IF_cond_exp = Neuron(
        parameters = """
            v_rest = -65.0
            cm  = 1.0
            tau_m  = 20.0
            tau_syn_E = 5.0
            tau_syn_I = 5.0
            e_rev_E = 0.0
            e_rev_I = -70.0
            v_thresh = -50.0
            v_reset = -65.0
            i_offset = 0.0
        """, 
        equations = """
            cm * dv/dt = cm/tau_m*(v_rest -v)   + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset : exponential, init=-65.0
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
        """,
        spike = "v > v_thresh",
        reset = "v = v_reset",
        refractory = 0.0
    )
    ```

    '''
    # For reporting
    _instantiated = []

    def __init__(self, v_rest=-65.0, cm=1.0, tau_m=20.0, tau_refrac=0.0, 
        tau_syn_E=5.0, tau_syn_I=5.0, e_rev_E = 0.0, e_rev_I = -70.0, 
        v_thresh=-50.0, v_reset=-65.0, i_offset=0.0):

        # Create the arguments
        parameters = """
            v_rest = %(v_rest)s
            cm  = %(cm)s
            tau_m  = %(tau_m)s
            tau_refrac = %(tau_refrac)s
            tau_syn_E = %(tau_syn_E)s
            tau_syn_I = %(tau_syn_I)s
            v_thresh = %(v_thresh)s
            v_reset = %(v_reset)s
            i_offset = %(i_offset)s
            e_rev_E = %(e_rev_E)s 
            e_rev_I = %(e_rev_I)s
        """ % {'v_rest':v_rest, 'cm':cm, 'tau_m':tau_m, 'tau_refrac':tau_refrac, 
                'tau_syn_E':tau_syn_E, 'tau_syn_I':tau_syn_I, 'v_thresh':v_thresh, 
                'v_reset':v_reset, 'i_offset':i_offset, 'e_rev_E': e_rev_E, 'e_rev_I': e_rev_I}

        # Equations for the variables
        equations="""    
            cm * dv/dt = cm/tau_m*(v_rest -v)   + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset : exponential, init=%(v_reset)s
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
        """% {'v_reset':v_reset}

        spike = """
            v > v_thresh
        """
        reset = """
            v = v_reset
        """
        Neuron.__init__(self, parameters=parameters, equations=equations, 
            spike=spike, reset=reset, refractory='tau_refrac',
            name="Integrate-and-Fire", 
            description="Leaky integrate-and-fire model with fixed threshold and decaying-exponential post-synaptic conductances.")

        # For reporting
        self._instantiated.append(True)

ANNarchy.models.Neurons.IF_curr_alpha #

Bases: Neuron

IF_curr_alpha neuron.

Leaky integrate-and-fire model with fixed threshold and alpha post-synaptic currents. (Separate synaptic currents for excitatory and inhibitory synapses).

The alpha currents are calculated through a system of two linears ODEs. After a spike is received at t_spike, it peaks at t_spike + tau_syn_X, with a maximum equal to the synaptic efficiency.

Parameters:

  • v_rest = -65.0 : Resting membrane potential (mV)
  • cm = 1.0 : Capacity of the membrane (nF)
  • tau_m = 20.0 : Membrane time constant (ms)
  • tau_refrac = 0.0 : Duration of refractory period (ms)
  • tau_syn_E = 5.0 : Rise time of excitatory synaptic current (ms)
  • tau_syn_I = 5.0 : Rise time of inhibitory synaptic current (ms)
  • i_offset = 0.0 : Offset current (nA)
  • v_reset = -65.0 : Reset potential after a spike (mV)
  • v_thresh = -50.0 : Spike threshold (mV)

Variables:

  • v : membrane potential in mV (init=-65.0):

    cm * dv/dt = cm/tau_m*(v_rest -v) + alpha_exc - alpha_inh + i_offset

  • g_exc : excitatory current (init = 0.0):

    tau_syn_E * dg_exc/dt = - g_exc

  • alpha_exc : alpha function of excitatory current (init = 0.0):

    tau_syn_E * dalpha_exc/dt = exp((tau_syn_E - dt/2.0)/tau_syn_E) * g_exc - alpha_exc

  • g_inh : inhibitory current (init = 0.0):

    tau_syn_I * dg_inh/dt = - g_inh

  • alpha_inh : alpha function of inhibitory current (init = 0.0):

    tau_syn_I * dalpha_inh/dt = exp((tau_syn_I - dt/2.0)/tau_syn_I) * g_inh - alpha_inh

Spike emission:

v > v_thresh

Reset:

v = v_reset

The ODEs are solved using the exponential Euler method.

Equivalent code:

IF_curr_alpha = Neuron(
    parameters = """
        v_rest = -65.0
        cm  = 1.0
        tau_m  = 20.0
        tau_syn_E = 5.0
        tau_syn_I = 5.0
        v_thresh = -50.0
        v_reset = -65.0
        i_offset = 0.0
    """, 
    equations = """
        gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
        gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)  
        cm * dv/dt = cm/tau_m*(v_rest -v)   + alpha_exc - alpha_inh + i_offset : exponential, init=-65.0
        tau_syn_E * dg_exc/dt = - g_exc : exponential
        tau_syn_I * dg_inh/dt = - g_inh : exponential
        tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
        tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
    """,
    spike = "v > v_thresh",
    reset = "v = v_reset",
    refractory = 0.0
)
Source code in ANNarchy/models/Neurons.py
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
class IF_curr_alpha(Neuron):
    '''
    IF_curr_alpha neuron.

    Leaky integrate-and-fire model with fixed threshold and alpha post-synaptic currents. (Separate synaptic currents for excitatory and inhibitory synapses).

    The alpha currents are calculated through a system of two linears ODEs. After a spike is received at t_spike, it peaks at t_spike + tau_syn_X, with a maximum equal to the synaptic efficiency.

    Parameters:

    * v_rest = -65.0 :  Resting membrane potential (mV)
    * cm  = 1.0 : Capacity of the membrane (nF)
    * tau_m  = 20.0 : Membrane time constant (ms)
    * tau_refrac = 0.0 : Duration of refractory period (ms)
    * tau_syn_E = 5.0 : Rise time of excitatory synaptic current (ms)
    * tau_syn_I = 5.0 : Rise time of inhibitory synaptic current (ms)
    * i_offset = 0.0 : Offset current (nA)
    * v_reset = -65.0 : Reset potential after a spike (mV)
    * v_thresh = -50.0 : Spike threshold (mV)

    Variables:

    * v : membrane potential in mV (init=-65.0):

        cm * dv/dt = cm/tau_m*(v_rest -v) + alpha_exc - alpha_inh + i_offset

    * g_exc : excitatory current (init = 0.0):

        tau_syn_E * dg_exc/dt = - g_exc

    * alpha_exc : alpha function of excitatory current (init = 0.0):

        tau_syn_E * dalpha_exc/dt = exp((tau_syn_E - dt/2.0)/tau_syn_E) * g_exc - alpha_exc

    * g_inh : inhibitory current (init = 0.0):

        tau_syn_I * dg_inh/dt = - g_inh

    * alpha_inh : alpha function of inhibitory current (init = 0.0):

        tau_syn_I * dalpha_inh/dt = exp((tau_syn_I - dt/2.0)/tau_syn_I) * g_inh - alpha_inh


    Spike emission:

        v > v_thresh

    Reset:

        v = v_reset

    The ODEs are solved using the exponential Euler method.

    Equivalent code:

    ```python

    IF_curr_alpha = Neuron(
        parameters = """
            v_rest = -65.0
            cm  = 1.0
            tau_m  = 20.0
            tau_syn_E = 5.0
            tau_syn_I = 5.0
            v_thresh = -50.0
            v_reset = -65.0
            i_offset = 0.0
        """, 
        equations = """
            gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
            gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)  
            cm * dv/dt = cm/tau_m*(v_rest -v)   + alpha_exc - alpha_inh + i_offset : exponential, init=-65.0
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
            tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
            tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
        """,
        spike = "v > v_thresh",
        reset = "v = v_reset",
        refractory = 0.0
    )
    ```

    '''
    # For reporting
    _instantiated = []

    def __init__(self, v_rest=-65.0, cm=1.0, tau_m=20.0, tau_refrac=0.0, 
        tau_syn_E=5.0, tau_syn_I=5.0, v_thresh=-50.0, v_reset=-65.0, i_offset=0.0):

        # Create the arguments
        parameters = """
            v_rest = %(v_rest)s
            cm  = %(cm)s
            tau_m  = %(tau_m)s
            tau_refrac = %(tau_refrac)s
            tau_syn_E = %(tau_syn_E)s
            tau_syn_I = %(tau_syn_I)s
            v_thresh = %(v_thresh)s
            v_reset = %(v_reset)s
            i_offset = %(i_offset)s
        """ % {'v_rest':v_rest, 'cm':cm, 'tau_m':tau_m, 'tau_refrac':tau_refrac, 
                'tau_syn_E':tau_syn_E, 'tau_syn_I':tau_syn_I, 'v_thresh':v_thresh, 'v_reset':v_reset, 'i_offset':i_offset}

        # Equations for the variables
        equations="""  
            gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
            gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)  
            cm * dv/dt = cm/tau_m*(v_rest -v)   + alpha_exc - alpha_inh + i_offset : exponential, init=%(v_reset)s
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
            tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
            tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
        """  % {'v_reset':v_reset}

        spike = """
            v > v_thresh
        """
        reset = """
            v = v_reset
        """
        Neuron.__init__(self, parameters=parameters, equations=equations, 
            spike=spike, reset=reset, refractory='tau_refrac',
            name="Integrate-and-Fire", 
            description="Leaky integrate-and-fire model with fixed threshold and alpha post-synaptic currents.")

        # For reporting
        self._instantiated.append(True)

ANNarchy.models.Neurons.IF_cond_alpha #

Bases: Neuron

IF_cond_exp neuron.

Leaky integrate-and-fire model with fixed threshold and alpha post-synaptic conductance.

Parameters:

  • v_rest = -65.0 : Resting membrane potential (mV)
  • cm = 1.0 : Capacity of the membrane (nF)
  • tau_m = 20.0 : Membrane time constant (ms)
  • tau_refrac = 0.0 : Duration of refractory period (ms)
  • tau_syn_E = 5.0 : Rise time of excitatory synaptic current (ms)
  • tau_syn_I = 5.0 : Rise time of inhibitory synaptic current (ms)
  • e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
  • e_rev_I = -70.0 : Reversal potential for inhibitory input (mv)
  • i_offset = 0.0 : Offset current (nA)
  • v_reset = -65.0 : Reset potential after a spike (mV)
  • v_thresh = -50.0 : Spike threshold (mV)

Variables:

  • v : membrane potential in mV (init=-65.0):

    cm * dv/dt = cm/tau_m*(v_rest -v) + alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset

  • g_exc : excitatory conductance (init = 0.0):

    tau_syn_E * dg_exc/dt = - g_exc

  • alpha_exc : alpha function of excitatory conductance (init = 0.0):

    tau_syn_E * dalpha_exc/dt = exp((tau_syn_E - dt/2.0)/tau_syn_E) * g_exc - alpha_exc

  • g_inh : inhibitory conductance (init = 0.0):

    tau_syn_I * dg_inh/dt = - g_inh

  • alpha_inh : alpha function of inhibitory current (init = 0.0):

    tau_syn_I * dalpha_inh/dt = exp((tau_syn_I - dt/2.0)/tau_syn_I) * g_inh - alpha_inh

Spike emission:

v > v_thresh

Reset:

v = v_reset

The ODEs are solved using the exponential Euler method.

Equivalent code:

IF_cond_alpha = Neuron(
    parameters = """
        v_rest = -65.0
        cm  = 1.0
        tau_m  = 20.0
        tau_syn_E = 5.0
        tau_syn_I = 5.0
        e_rev_E = 0.0
        e_rev_I = -70.0
        v_thresh = -50.0
        v_reset = -65.0
        i_offset = 0.0
    """, 
    equations = """
        gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
        gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)
        cm * dv/dt = cm/tau_m*(v_rest -v)   + alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset : exponential, init=-65.0
        tau_syn_E * dg_exc/dt = - g_exc : exponential
        tau_syn_I * dg_inh/dt = - g_inh : exponential
        tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
        tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
    """,
    spike = "v > v_thresh",
    reset = "v = v_reset",
    refractory = 0.0
)
Source code in ANNarchy/models/Neurons.py
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
class IF_cond_alpha(Neuron):
    '''
    IF_cond_exp neuron.

    Leaky integrate-and-fire model with fixed threshold and alpha post-synaptic conductance.

    Parameters:

    * v_rest = -65.0 :  Resting membrane potential (mV)
    * cm  = 1.0 : Capacity of the membrane (nF)
    * tau_m  = 20.0 : Membrane time constant (ms)
    * tau_refrac = 0.0 : Duration of refractory period (ms)
    * tau_syn_E = 5.0 : Rise time of excitatory synaptic current (ms)
    * tau_syn_I = 5.0 : Rise time of inhibitory synaptic current (ms)
    * e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
    * e_rev_I = -70.0 : Reversal potential for inhibitory input (mv)
    * i_offset = 0.0 : Offset current (nA)
    * v_reset = -65.0 : Reset potential after a spike (mV)
    * v_thresh = -50.0 : Spike threshold (mV)

    Variables:

    * v : membrane potential in mV (init=-65.0):

        cm * dv/dt = cm/tau_m*(v_rest -v)  + alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset

    * g_exc : excitatory conductance (init = 0.0):

        tau_syn_E * dg_exc/dt = - g_exc

    * alpha_exc : alpha function of excitatory conductance (init = 0.0):

        tau_syn_E * dalpha_exc/dt = exp((tau_syn_E - dt/2.0)/tau_syn_E) * g_exc - alpha_exc

    * g_inh : inhibitory conductance (init = 0.0):

        tau_syn_I * dg_inh/dt = - g_inh

    * alpha_inh : alpha function of inhibitory current (init = 0.0):

        tau_syn_I * dalpha_inh/dt = exp((tau_syn_I - dt/2.0)/tau_syn_I) * g_inh - alpha_inh


    Spike emission:

        v > v_thresh

    Reset:

        v = v_reset

    The ODEs are solved using the exponential Euler method.

    Equivalent code:

    ```python

    IF_cond_alpha = Neuron(
        parameters = """
            v_rest = -65.0
            cm  = 1.0
            tau_m  = 20.0
            tau_syn_E = 5.0
            tau_syn_I = 5.0
            e_rev_E = 0.0
            e_rev_I = -70.0
            v_thresh = -50.0
            v_reset = -65.0
            i_offset = 0.0
        """, 
        equations = """
            gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
            gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)
            cm * dv/dt = cm/tau_m*(v_rest -v)   + alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset : exponential, init=-65.0
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
            tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
            tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
        """,
        spike = "v > v_thresh",
        reset = "v = v_reset",
        refractory = 0.0
    )
    ```
    '''
    # For reporting
    _instantiated = []

    def __init__(self, v_rest=-65.0, cm=1.0, tau_m=20.0, tau_refrac=0.0, 
        tau_syn_E=5.0, tau_syn_I=5.0, e_rev_E = 0.0, e_rev_I = -70.0, 
        v_thresh=-50.0, v_reset=-65.0, i_offset=0.0):

        # Create the arguments
        parameters = """
            v_rest = %(v_rest)s
            cm  = %(cm)s
            tau_m  = %(tau_m)s
            tau_refrac = %(tau_refrac)s
            tau_syn_E = %(tau_syn_E)s
            tau_syn_I = %(tau_syn_I)s
            v_thresh = %(v_thresh)s
            v_reset = %(v_reset)s
            i_offset = %(i_offset)s
            e_rev_E = %(e_rev_E)s 
            e_rev_I = %(e_rev_I)s
        """ % {'v_rest':v_rest, 'cm':cm, 'tau_m':tau_m, 'tau_refrac':tau_refrac, 
                'tau_syn_E':tau_syn_E, 'tau_syn_I':tau_syn_I, 'v_thresh':v_thresh, 
                'v_reset':v_reset, 'i_offset':i_offset, 'e_rev_E': e_rev_E, 'e_rev_I': e_rev_I}

        # Equations for the variables
        equations="""    
            gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
            gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)
            cm * dv/dt = cm/tau_m*(v_rest -v)   + alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset : exponential, init=%(v_reset)s
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
            tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
            tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
        """ % {'v_reset': v_reset}

        spike = """
            v > v_thresh
        """
        reset = """
            v = v_reset
        """
        Neuron.__init__(self, parameters=parameters, equations=equations, 
            spike=spike, reset=reset, refractory='tau_refrac',
            name="Integrate-and-Fire", 
            description="Leaky integrate-and-fire model with fixed threshold and alpha post-synaptic conductances.")

        # For reporting
        self._instantiated.append(True)

ANNarchy.models.Neurons.HH_cond_exp #

Bases: Neuron

HH_cond_exp neuron.

Single-compartment Hodgkin-Huxley-type neuron with transient sodium and delayed-rectifier potassium currents using the ion channel models from Traub.

Parameters:

  • gbar_Na = 20.0 : Maximal conductance of the Sodium current.
  • gbar_K = 6.0 : Maximal conductance of the Potassium current.
  • gleak = 0.01 : Conductance of the leak current (nF)
  • cm = 0.2 : Capacity of the membrane (nF)
  • v_offset = -63.0 : Threshold for the rate constants (mV)
  • e_rev_Na = 50.0 : Reversal potential for the Sodium current (mV)
  • e_rev_K = -90.0 : Reversal potential for the Potassium current (mV)
  • e_rev_leak = -65.0 : Reversal potential for the leak current (mV)
  • e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
  • e_rev_I = -80.0 : Reversal potential for inhibitory input (mV)
  • tau_syn_E = 0.2 : Decay time of excitatory synaptic current (ms)
  • tau_syn_I = 2.0 : Decay time of inhibitory synaptic current (ms)
  • i_offset = 0.0 : Offset current (nA)
  • v_thresh = 0.0 : Threshold for spike emission

Variables:

  • Voltage-dependent rate constants an, bn, am, bm, ah, bh:

    an = 0.032 * (15.0 - v + v_offset) / (exp((15.0 - v + v_offset)/5.0) - 1.0) am = 0.32 * (13.0 - v + v_offset) / (exp((13.0 - v + v_offset)/4.0) - 1.0) ah = 0.128 * exp((17.0 - v + v_offset)/18.0)

    bn = 0.5 * exp ((10.0 - v + v_offset)/40.0) bm = 0.28 * (v - v_offset - 40.0) / (exp((v - v_offset - 40.0)/5.0) - 1.0) bh = 4.0/(1.0 + exp (( 10.0 - v + v_offset )) )

  • Activation variables n, m, h (h is initialized to 1.0, n and m to 0.0):

    dn/dt = an * (1.0 - n) - bn * n dm/dt = am * (1.0 - m) - bm * m dh/dt = ah * (1.0 - h) - bh * h

  • v : membrane potential in mV (init=-65.0):

    cm * dv/dt = gleak(e_rev_leak -v) + gbar_K * n4 * (e_rev_K - v) + gbar_Na * m*3 * h * (e_rev_Na - v) + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

  • g_exc : excitatory conductance (init = 0.0):

    tau_syn_E * dg_exc/dt = - g_exc

  • g_inh : inhibitory conductance (init = 0.0):

    tau_syn_I * dg_inh/dt = - g_inh

Spike emission (the spike is emitted only once when v crosses the threshold from below):

v > v_thresh and v(t-1) < v_thresh

The ODEs for n, m, h and v are solved using the midpoint method, while the conductances g_exc and g_inh are solved using the exponential Euler method.

Equivalent code:

HH_cond_exp = Neuron(
    parameters = """
        gbar_Na = 20.0
        gbar_K = 6.0
        gleak = 0.01
        cm = 0.2 
        v_offset = -63.0 
        e_rev_Na = 50.0
        e_rev_K = -90.0 
        e_rev_leak = -65.0
        e_rev_E = 0.0
        e_rev_I = -80.0 
        tau_syn_E = 0.2
        tau_syn_I = 2.0
        i_offset = 0.0
        v_thresh = 0.0
    """, 
    equations = """
        # Previous membrane potential
        prev_v = v

        # Voltage-dependent rate constants
        an = 0.032 * (15.0 - v + v_offset) / (exp((15.0 - v + v_offset)/5.0) - 1.0)
        am = 0.32  * (13.0 - v + v_offset) / (exp((13.0 - v + v_offset)/4.0) - 1.0)
        ah = 0.128 * exp((17.0 - v + v_offset)/18.0) 

        bn = 0.5   * exp ((10.0 - v + v_offset)/40.0)
        bm = 0.28  * (v - v_offset - 40.0) / (exp((v - v_offset - 40.0)/5.0) - 1.0)
        bh = 4.0/(1.0 + exp (( 10.0 - v + v_offset )) )

        # Activation variables
        dn/dt = an * (1.0 - n) - bn * n : init = 0.0, exponential
        dm/dt = am * (1.0 - m) - bm * m : init = 0.0, exponential
        dh/dt = ah * (1.0 - h) - bh * h : init = 1.0, exponential

        # Membrane equation
        cm * dv/dt = gleak*(e_rev_leak -v) + gbar_K * n**4 * (e_rev_K - v) + gbar_Na * m**3 * h * (e_rev_Na - v)
                        + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset: exponential, init=-65.0

        # Exponentially-decaying conductances
        tau_syn_E * dg_exc/dt = - g_exc : exponential
        tau_syn_I * dg_inh/dt = - g_inh : exponential
    """,
    spike = "(v > v_thresh) and (prev_v <= v_thresh)",
    reset = ""
)
Source code in ANNarchy/models/Neurons.py
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
class HH_cond_exp(Neuron):
    '''
    HH_cond_exp neuron.

    Single-compartment Hodgkin-Huxley-type neuron with transient sodium and delayed-rectifier potassium currents using the ion channel models from Traub.

    Parameters:

    * gbar_Na = 20.0 : Maximal conductance of the Sodium current.
    * gbar_K = 6.0 : Maximal conductance of the Potassium current. 
    * gleak = 0.01 : Conductance of the leak current (nF)  
    * cm = 0.2 : Capacity of the membrane (nF)
    * v_offset = -63.0 :  Threshold for the rate constants (mV)  
    * e_rev_Na = 50.0 : Reversal potential for the Sodium current (mV) 
    * e_rev_K = -90.0 : Reversal potential for the Potassium current (mV)  
    * e_rev_leak = -65.0 : Reversal potential for the leak current (mV)   
    * e_rev_E = 0.0 : Reversal potential for excitatory input (mV)  
    * e_rev_I = -80.0 : Reversal potential for inhibitory input (mV)  
    * tau_syn_E = 0.2 : Decay time of excitatory synaptic current (ms)  
    * tau_syn_I = 2.0 : Decay time of inhibitory synaptic current (ms)   
    * i_offset = 0.0 : Offset current (nA)
    * v_thresh = 0.0 : Threshold for spike emission

    Variables:

    * Voltage-dependent rate constants an, bn, am, bm, ah, bh:

        an = 0.032 * (15.0 - v + v_offset) / (exp((15.0 - v + v_offset)/5.0) - 1.0)
        am = 0.32  * (13.0 - v + v_offset) / (exp((13.0 - v + v_offset)/4.0) - 1.0)
        ah = 0.128 * exp((17.0 - v + v_offset)/18.0) 

        bn = 0.5   * exp ((10.0 - v + v_offset)/40.0)
        bm = 0.28  * (v - v_offset - 40.0) / (exp((v - v_offset - 40.0)/5.0) - 1.0)
        bh = 4.0/(1.0 + exp (( 10.0 - v + v_offset )) )

    * Activation variables n, m, h (h is initialized to 1.0, n and m to 0.0):

        dn/dt = an * (1.0 - n) - bn * n 
        dm/dt = am * (1.0 - m) - bm * m 
        dh/dt = ah * (1.0 - h) - bh * h 


    * v : membrane potential in mV (init=-65.0):

        cm * dv/dt = gleak*(e_rev_leak -v) + gbar_K * n**4 * (e_rev_K - v) + gbar_Na * m**3 * h * (e_rev_Na - v) + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

    * g_exc : excitatory conductance (init = 0.0):

        tau_syn_E * dg_exc/dt = - g_exc

    * g_inh : inhibitory conductance (init = 0.0):

        tau_syn_I * dg_inh/dt = - g_inh


    Spike emission (the spike is emitted only once when v crosses the threshold from below):

        v > v_thresh and v(t-1) < v_thresh

    The ODEs for n, m, h and v are solved using the midpoint method, while the conductances g_exc and g_inh are solved using the exponential Euler method.

    Equivalent code:

    ```python

    HH_cond_exp = Neuron(
        parameters = """
            gbar_Na = 20.0
            gbar_K = 6.0
            gleak = 0.01
            cm = 0.2 
            v_offset = -63.0 
            e_rev_Na = 50.0
            e_rev_K = -90.0 
            e_rev_leak = -65.0
            e_rev_E = 0.0
            e_rev_I = -80.0 
            tau_syn_E = 0.2
            tau_syn_I = 2.0
            i_offset = 0.0
            v_thresh = 0.0
        """, 
        equations = """
            # Previous membrane potential
            prev_v = v

            # Voltage-dependent rate constants
            an = 0.032 * (15.0 - v + v_offset) / (exp((15.0 - v + v_offset)/5.0) - 1.0)
            am = 0.32  * (13.0 - v + v_offset) / (exp((13.0 - v + v_offset)/4.0) - 1.0)
            ah = 0.128 * exp((17.0 - v + v_offset)/18.0) 

            bn = 0.5   * exp ((10.0 - v + v_offset)/40.0)
            bm = 0.28  * (v - v_offset - 40.0) / (exp((v - v_offset - 40.0)/5.0) - 1.0)
            bh = 4.0/(1.0 + exp (( 10.0 - v + v_offset )) )

            # Activation variables
            dn/dt = an * (1.0 - n) - bn * n : init = 0.0, exponential
            dm/dt = am * (1.0 - m) - bm * m : init = 0.0, exponential
            dh/dt = ah * (1.0 - h) - bh * h : init = 1.0, exponential

            # Membrane equation
            cm * dv/dt = gleak*(e_rev_leak -v) + gbar_K * n**4 * (e_rev_K - v) + gbar_Na * m**3 * h * (e_rev_Na - v)
                            + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset: exponential, init=-65.0

            # Exponentially-decaying conductances
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
        """,
        spike = "(v > v_thresh) and (prev_v <= v_thresh)",
        reset = ""
    )
    ```

    '''
    # For reporting
    _instantiated = []

    def __init__(self, gbar_Na = 20.0, gbar_K = 6.0, gleak = 0.01, cm = 0.2, 
        v_offset = -63.0, e_rev_Na = 50.0, e_rev_K = -90.0, e_rev_leak = -65.0, 
        e_rev_E = 0.0, e_rev_I = -80.0, tau_syn_E = 0.2, tau_syn_I = 2.0, 
        i_offset = 0.0, v_thresh = 0.0):

        parameters = """
        gbar_Na    = %(gbar_Na)s   
        gbar_K     = %(gbar_K)s     
        gleak      = %(gleak)s      
        cm         = %(cm)s        
        v_offset   = %(v_offset)s 
        e_rev_Na   = %(e_rev_Na)s 
        e_rev_K    = %(e_rev_K)s   
        e_rev_leak = %(e_rev_leak)s   
        e_rev_E    = %(e_rev_E)s    
        e_rev_I    = %(e_rev_I)s   
        tau_syn_E  = %(tau_syn_E)s 
        tau_syn_I  = %(tau_syn_I)s 
        i_offset   = %(i_offset)s  
        v_thresh   = %(v_thresh)s  
        """ % {
        'gbar_Na'    : gbar_Na   ,
        'gbar_K'     : gbar_K     ,
        'gleak'      : gleak      ,
        'cm'         : cm        ,
        'v_offset'   : v_offset  ,
        'e_rev_Na'   : e_rev_Na  ,
        'e_rev_K'    : e_rev_K   ,
        'e_rev_leak' : e_rev_leak   ,
        'e_rev_E'    : e_rev_E    ,
        'e_rev_I'    : e_rev_I   ,
        'tau_syn_E'  : tau_syn_E ,
        'tau_syn_I'  : tau_syn_I ,
        'i_offset'   : i_offset  ,
        'v_thresh'   : v_thresh  
        }

        equations = """
            # Previous membrane potential
            prev_v = v

            # Voltage-dependent rate constants
            an = 0.032 * (15.0 - v + v_offset) / (exp((15.0 - v + v_offset)/5.0) - 1.0)
            am = 0.32  * (13.0 - v + v_offset) / (exp((13.0 - v + v_offset)/4.0) - 1.0)
            ah = 0.128 * exp((17.0 - v + v_offset)/18.0) 

            bn = 0.5   * exp ((10.0 - v + v_offset)/40.0)
            bm = 0.28  * (v - v_offset - 40.0) / (exp((v - v_offset - 40.0)/5.0) - 1.0)
            bh = 4.0/(1.0 + exp (( 10.0 - v + v_offset )) )

            # Activation variables
            dn/dt = an * (1.0 - n) - bn * n : init = 0.0, exponential
            dm/dt = am * (1.0 - m) - bm * m : init = 0.0, exponential
            dh/dt = ah * (1.0 - h) - bh * h : init = 1.0, exponential

            # Membrane equation
            cm * dv/dt = gleak*(e_rev_leak -v) + gbar_K * n**4 * (e_rev_K - v) + gbar_Na * m**3 * h * (e_rev_Na - v) 
                + g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset: exponential, init=%(e_rev_leak)s

            # Exponentially-decaying conductances
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
        """ % {'e_rev_leak': e_rev_leak}

        spike = "(v > v_thresh) and (prev_v <= v_thresh)"

        reset = ""

        Neuron.__init__(self, parameters=parameters, equations=equations, 
            spike=spike, reset=reset,
            name="Hodgkin-Huxley", 
            description="Single-compartment Hodgkin-Huxley-type neuron with transient sodium and delayed-rectifier potassium currents.")

        # For reporting
        self._instantiated.append(True)

ANNarchy.models.Neurons.EIF_cond_exp_isfa_ista #

Bases: Neuron

EIF_cond_exp neuron.

Exponential integrate-and-fire neuron with spike triggered and sub-threshold adaptation currents (isfa, ista reps.) according to:

Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

Parameters:

  • v_rest = -70.6 : Resting membrane potential (mV)
  • cm = 0.281 : Capacity of the membrane (nF)
  • tau_m = 9.3667 : Membrane time constant (ms)
  • tau_refrac = 0.1 : Duration of refractory period (ms)
  • tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
  • tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
  • e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
  • e_rev_I = -80.0 : Reversal potential for inhibitory input (mv)
  • tau_w = 144.0 : Time constant of the adaptation variable (ms)
  • a = 4.0 : Scaling of the adaptation variable
  • b = 0.0805 : Increment on the adaptation variable after a spike
  • i_offset = 0.0 : Offset current (nA)
  • delta_T = 2.0 : Speed of the exponential (mV)
  • v_thresh = -50.4 : Spike threshold for the exponential (mV)
  • v_reset = -70.6 : Reset potential after a spike (mV)
  • v_spike = -40.0 : Spike threshold (mV)

Variables:

  • I : input current (nA):

    I = g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

  • v : membrane potential in mV (init=-70.6):

    tau_m * dv/dt = (v_rest - v + delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w)

  • w : adaptation variable (init=0.0):

    tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w

  • g_exc : excitatory current (init = 0.0):

    tau_syn_E * dg_exc/dt = - g_exc

  • g_inh : inhibitory current (init = 0.0):

    tau_syn_I * dg_inh/dt = - g_inh

Spike emission:

v > v_thresh

Reset:

v = v_reset
u += b

The ODEs are solved using the explicit Euler method.

Equivalent code:

EIF_cond_exp_isfa_ista = Neuron(
    parameters = """
        v_rest = -70.6
        cm = 0.281 
        tau_m = 9.3667 
        tau_syn_E = 5.0 
        tau_syn_I = 5.0 
        e_rev_E = 0.0 
        e_rev_I = -80.0
        tau_w = 144.0 
        a = 4.0
        b = 0.0805
        i_offset = 0.0
        delta_T = 2.0 
        v_thresh = -50.4
        v_reset = -70.6
        v_spike = -40.0 
    """, 
    equations = """
        I = g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset            
        tau_m * dv/dt = (v_rest - v +  delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w) : init=-70.6          
        tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w           
        tau_syn_E * dg_exc/dt = - g_exc : exponential
        tau_syn_I * dg_inh/dt = - g_inh : exponential
    """,
    spike = "v > v_spike",
    reset = """
        v = v_reset
        w += b
    """,
    refractory = 0.1
)
Source code in ANNarchy/models/Neurons.py
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
class EIF_cond_exp_isfa_ista(Neuron):
    '''
    EIF_cond_exp neuron.

    Exponential integrate-and-fire neuron with spike triggered and sub-threshold adaptation currents (isfa, ista reps.) according to:

    Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

    Parameters:

    * v_rest = -70.6 :  Resting membrane potential (mV)
    * cm = 0.281 : Capacity of the membrane (nF)
    * tau_m = 9.3667 : Membrane time constant (ms)
    * tau_refrac = 0.1 : Duration of refractory period (ms)
    * tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
    * tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
    * e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
    * e_rev_I = -80.0 : Reversal potential for inhibitory input (mv)
    * tau_w = 144.0 : Time constant of the adaptation variable (ms)
    * a = 4.0 : Scaling of the adaptation variable
    * b = 0.0805 : Increment on the adaptation variable after a spike
    * i_offset = 0.0 : Offset current (nA)
    * delta_T = 2.0 : Speed of the exponential (mV)
    * v_thresh = -50.4 : Spike threshold for the exponential (mV)
    * v_reset = -70.6 : Reset potential after a spike (mV)
    * v_spike = -40.0 : Spike threshold (mV)

    Variables:

    * I : input current (nA):

        I = g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

    * v : membrane potential in mV (init=-70.6):

        tau_m * dv/dt = (v_rest - v +  delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w)

    * w : adaptation variable (init=0.0):

        tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w

    * g_exc : excitatory current (init = 0.0):

        tau_syn_E * dg_exc/dt = - g_exc

    * g_inh : inhibitory current (init = 0.0):

        tau_syn_I * dg_inh/dt = - g_inh


    Spike emission:

        v > v_thresh

    Reset:

        v = v_reset
        u += b

    The ODEs are solved using the explicit Euler method.

    Equivalent code:

    ```python

    EIF_cond_exp_isfa_ista = Neuron(
        parameters = """
            v_rest = -70.6
            cm = 0.281 
            tau_m = 9.3667 
            tau_syn_E = 5.0 
            tau_syn_I = 5.0 
            e_rev_E = 0.0 
            e_rev_I = -80.0
            tau_w = 144.0 
            a = 4.0
            b = 0.0805
            i_offset = 0.0
            delta_T = 2.0 
            v_thresh = -50.4
            v_reset = -70.6
            v_spike = -40.0 
        """, 
        equations = """
            I = g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset            
            tau_m * dv/dt = (v_rest - v +  delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w) : init=-70.6          
            tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w           
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
        """,
        spike = "v > v_spike",
        reset = """
            v = v_reset
            w += b
        """,
        refractory = 0.1
    )
    ```

    '''

    # For reporting
    _instantiated = []

    def __init__(self, v_rest = -70.6, cm = 0.281, tau_m = 9.3667, 
        tau_refrac = 0.1, tau_syn_E = 5.0, tau_syn_I = 5.0, 
        e_rev_E = 0.0, e_rev_I = -80.0, tau_w = 144.0, 
        a = 4.0, b = 0.0805, i_offset = 0.0, delta_T = 2.0, 
        v_thresh = -50.4, v_reset = -70.6, v_spike = -40.0):

        # Create the arguments
        parameters = """
            v_rest     = %(v_rest)s
            cm         = %(cm)s
            tau_m      = %(tau_m)s
            tau_refrac = %(tau_refrac)s
            tau_syn_E  = %(tau_syn_E)s
            tau_syn_I  = %(tau_syn_I)s
            e_rev_E    = %(e_rev_E)s
            e_rev_I    = %(e_rev_I)s
            tau_w      = %(tau_w)s
            a          = %(a)s
            b          = %(b)s
            i_offset   = %(i_offset)s
            delta_T    = %(delta_T)s
            v_thresh   = %(v_thresh)s
            v_reset    = %(v_reset)s
            v_spike    = %(v_spike)s
        """ % {
            'v_rest'     : v_rest    ,
            'cm'         : cm        ,
            'tau_m'      : tau_m     ,
            'tau_refrac' : tau_refrac,
            'tau_syn_E'  : tau_syn_E ,
            'tau_syn_I'  : tau_syn_I ,
            'e_rev_E'    : e_rev_E   ,
            'e_rev_I'    : e_rev_I   ,
            'tau_w'      : tau_w     ,
            'a'          : a         ,
            'b'          : b         ,
            'i_offset'   : i_offset  ,
            'delta_T'    : delta_T   ,
            'v_thresh'   : v_thresh  ,
            'v_reset'    : v_reset   ,
            'v_spike'    : v_spike   ,
        }
        # Equations for the variables
        equations="""    
            I = g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

            tau_m * dv/dt = (v_rest - v +  delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w) : init=%(v_reset)s

            tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w 

            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
        """ % {'v_reset': v_reset}

        spike = """
            v > v_spike
        """
        reset = """
            v = v_reset
            w += b
        """
        Neuron.__init__(self, parameters=parameters, equations=equations, 
            spike=spike, reset=reset, refractory='tau_refrac',
            name="Adaptive exponential Integrate-and-Fire", 
            description="Exponential integrate-and-fire neuron with spike triggered and sub-threshold adaptation currents (isfa, ista reps.).")

        # For reporting
        self._instantiated.append(True)

ANNarchy.models.Neurons.EIF_cond_alpha_isfa_ista #

Bases: Neuron

EIF_cond_alpha neuron.

Exponential integrate-and-fire neuron with spike triggered and sub-threshold adaptation conductances (isfa, ista reps.) according to:

Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

Parameters:

  • v_rest = -70.6 : Resting membrane potential (mV)
  • cm = 0.281 : Capacity of the membrane (nF)
  • tau_m = 9.3667 : Membrane time constant (ms)
  • tau_refrac = 0.1 : Duration of refractory period (ms)
  • tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
  • tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
  • e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
  • e_rev_I = -80.0 : Reversal potential for inhibitory input (mv)
  • tau_w = 144.0 : Time constant of the adaptation variable (ms)
  • a = 4.0 : Scaling of the adaptation variable
  • b = 0.0805 : Increment on the adaptation variable after a spike
  • i_offset = 0.0 : Offset current (nA)
  • delta_T = 2.0 : Speed of the exponential (mV)
  • v_thresh = -50.4 : Spike threshold for the exponential (mV)
  • v_reset = -70.6 : Reset potential after a spike (mV)
  • v_spike = -40.0 : Spike threshold (mV)

Variables:

  • I : input current (nA):

    I = g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

  • v : membrane potential in mV (init=-70.6):

    tau_m * dv/dt = (v_rest - v + delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w)

  • w : adaptation variable (init=0.0):

    tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w

  • g_exc : excitatory current (init = 0.0):

    tau_syn_E * dg_exc/dt = - g_exc

  • g_inh : inhibitory current (init = 0.0):

    tau_syn_I * dg_inh/dt = - g_inh

  • alpha_exc : alpha function of excitatory current (init = 0.0):

    tau_syn_E * dalpha_exc/dt = exp((tau_syn_E - dt/2.0)/tau_syn_E) * g_exc - alpha_exc

  • alpha_inh: alpha function of inhibitory current (init = 0.0):

    tau_syn_I * dalpha_inh/dt = exp((tau_syn_I - dt/2.0)/tau_syn_I) * g_inh - alpha_inh

Spike emission:

v > v_spike

Reset:

v = v_reset
u += b

The ODEs are solved using the explicit Euler method.

Equivalent code:

EIF_cond_alpha_isfa_ista = Neuron(
    parameters = """
        v_rest = -70.6
        cm = 0.281 
        tau_m = 9.3667 
        tau_syn_E = 5.0 
        tau_syn_I = 5.0 
        e_rev_E = 0.0 
        e_rev_I = -80.0
        tau_w = 144.0 
        a = 4.0
        b = 0.0805
        i_offset = 0.0
        delta_T = 2.0 
        v_thresh = -50.4
        v_reset = -70.6
        v_spike = -40.0 
    """, 
    equations = """
        gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
        gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)                
        I = alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset
        tau_m * dv/dt = (v_rest - v +  delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w) : init=-70.6
        tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w 
        tau_syn_E * dg_exc/dt = - g_exc : exponential
        tau_syn_I * dg_inh/dt = - g_inh : exponential
        tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
        tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
    """,
    spike = "v > v_spike",
    reset = """
        v = v_reset
        w += b
    """,
    refractory = 0.1
)
Source code in ANNarchy/models/Neurons.py
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
class EIF_cond_alpha_isfa_ista(Neuron):
    ''' 
    EIF_cond_alpha neuron.

    Exponential integrate-and-fire neuron with spike triggered and sub-threshold adaptation conductances (isfa, ista reps.) according to:

    Brette R and Gerstner W (2005) Adaptive Exponential Integrate-and-Fire Model as an Effective Description of Neuronal Activity. J Neurophysiol 94:3637-3642

    Parameters:

    * v_rest = -70.6 :  Resting membrane potential (mV)
    * cm = 0.281 : Capacity of the membrane (nF)
    * tau_m = 9.3667 : Membrane time constant (ms)
    * tau_refrac = 0.1 : Duration of refractory period (ms)
    * tau_syn_E = 5.0 : Decay time of excitatory synaptic current (ms)
    * tau_syn_I = 5.0 : Decay time of inhibitory synaptic current (ms)
    * e_rev_E = 0.0 : Reversal potential for excitatory input (mV)
    * e_rev_I = -80.0 : Reversal potential for inhibitory input (mv)
    * tau_w = 144.0 : Time constant of the adaptation variable (ms)
    * a = 4.0 : Scaling of the adaptation variable
    * b = 0.0805 : Increment on the adaptation variable after a spike
    * i_offset = 0.0 : Offset current (nA)
    * delta_T = 2.0 : Speed of the exponential (mV)
    * v_thresh = -50.4 : Spike threshold for the exponential (mV)
    * v_reset = -70.6 : Reset potential after a spike (mV)
    * v_spike = -40.0 : Spike threshold (mV)

    Variables:

    * I : input current (nA):

        I = g_exc * (e_rev_E - v) + g_inh * (e_rev_I - v) + i_offset

    * v : membrane potential in mV (init=-70.6):

        tau_m * dv/dt = (v_rest - v +  delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w)

    * w : adaptation variable (init=0.0):

        tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w

    * g_exc : excitatory current (init = 0.0):

        tau_syn_E * dg_exc/dt = - g_exc

    * g_inh : inhibitory current (init = 0.0):

        tau_syn_I * dg_inh/dt = - g_inh

    * alpha_exc : alpha function of excitatory current (init = 0.0):

        tau_syn_E * dalpha_exc/dt = exp((tau_syn_E - dt/2.0)/tau_syn_E) * g_exc - alpha_exc  

    * alpha_inh: alpha function of inhibitory current (init = 0.0):

        tau_syn_I * dalpha_inh/dt = exp((tau_syn_I - dt/2.0)/tau_syn_I) * g_inh - alpha_inh  


    Spike emission:

        v > v_spike

    Reset:

        v = v_reset
        u += b

    The ODEs are solved using the explicit Euler method.

    Equivalent code:

    ```python

    EIF_cond_alpha_isfa_ista = Neuron(
        parameters = """
            v_rest = -70.6
            cm = 0.281 
            tau_m = 9.3667 
            tau_syn_E = 5.0 
            tau_syn_I = 5.0 
            e_rev_E = 0.0 
            e_rev_I = -80.0
            tau_w = 144.0 
            a = 4.0
            b = 0.0805
            i_offset = 0.0
            delta_T = 2.0 
            v_thresh = -50.4
            v_reset = -70.6
            v_spike = -40.0 
        """, 
        equations = """
            gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
            gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)                
            I = alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset
            tau_m * dv/dt = (v_rest - v +  delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w) : init=-70.6
            tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w 
            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
            tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
            tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
        """,
        spike = "v > v_spike",
        reset = """
            v = v_reset
            w += b
        """,
        refractory = 0.1
    )
    ```

    '''
    # For reporting
    _instantiated = []

    def __init__(self, v_rest = -70.6, cm = 0.281, tau_m = 9.3667, 
        tau_refrac = 0.1, tau_syn_E = 5.0, tau_syn_I = 5.0, 
        e_rev_E = 0.0, e_rev_I = -80.0, tau_w = 144.0, 
        a = 4.0, b = 0.0805, i_offset = 0.0, delta_T = 2.0, 
        v_thresh = -50.4, v_reset = -70.6, v_spike = -40.0):

        # Create the arguments
        parameters = """
            v_rest     = %(v_rest)s
            cm         = %(cm)s
            tau_m      = %(tau_m)s
            tau_refrac = %(tau_refrac)s
            tau_syn_E  = %(tau_syn_E)s
            tau_syn_I  = %(tau_syn_I)s
            e_rev_E    = %(e_rev_E)s
            e_rev_I    = %(e_rev_I)s
            tau_w      = %(tau_w)s
            a          = %(a)s
            b          = %(b)s
            i_offset   = %(i_offset)s
            delta_T    = %(delta_T)s
            v_thresh   = %(v_thresh)s
            v_reset    = %(v_reset)s
            v_spike    = %(v_spike)s
        """ % {
            'v_rest'     : v_rest    ,
            'cm'         : cm        ,
            'tau_m'      : tau_m     ,
            'tau_refrac' : tau_refrac,
            'tau_syn_E'  : tau_syn_E ,
            'tau_syn_I'  : tau_syn_I ,
            'e_rev_E'    : e_rev_E   ,
            'e_rev_I'    : e_rev_I   ,
            'tau_w'      : tau_w     ,
            'a'          : a         ,
            'b'          : b         ,
            'i_offset'   : i_offset  ,
            'delta_T'    : delta_T   ,
            'v_thresh'   : v_thresh  ,
            'v_reset'    : v_reset   ,
            'v_spike'    : v_spike   ,
        }
        # Equations for the variables
        equations="""    

            gmax_exc = exp((tau_syn_E - dt/2.0)/tau_syn_E)
            gmax_inh = exp((tau_syn_I - dt/2.0)/tau_syn_I)

            I = alpha_exc * (e_rev_E - v) + alpha_inh * (e_rev_I - v) + i_offset

            tau_m * dv/dt = (v_rest - v +  delta_T * exp((v-v_thresh)/delta_T)) + tau_m/cm*(I - w) : init=%(v_reset)s

            tau_w * dw/dt = a * (v - v_rest) / 1000.0 - w 

            tau_syn_E * dg_exc/dt = - g_exc : exponential
            tau_syn_I * dg_inh/dt = - g_inh : exponential
            tau_syn_E * dalpha_exc/dt = gmax_exc * g_exc - alpha_exc  : exponential
            tau_syn_I * dalpha_inh/dt = gmax_inh * g_inh - alpha_inh  : exponential
        """ % {'v_reset': v_reset}

        spike = """
            v > v_spike
        """
        reset = """
            v = v_reset
            w += b
        """
        Neuron.__init__(self, parameters=parameters, equations=equations, 
            spike=spike, reset=reset, refractory='tau_refrac',
            name="Adaptive exponential Integrate-and-Fire", 
            description="Exponential integrate-and-fire neuron with spike triggered and sub-threshold adaptation conductances (isfa, ista reps.).")

        # For reporting
        self._instantiated.append(True)